Cómo simplificar las identidades trigonométricas
Escrito por Grace Williams ; última actualización: February 01, 2018Las identidades trigonométricas son las ecuaciones que definen las funciones trigonométricas (seno, coseno, secante, cosecante, tangente y cotangente) en términos de cada una. Las más comunes, las identidades de base que se llaman identidades pitagóricas porque se derivan del teorema de Pitágoras, define las partes "a" y "b" y la hipotenusa "c" de un triángulo rectángulo como a ^ 2 + b ^ 2 = c ^ 2. Estas identidades son: sen ^ 2 (t) + cos ^ 2 (t) = 1; tan (t) = sen (t) / cos (t); csc (t) = 1/sen (t) sec (t ) = 1/cos (t) o cot (t) = 1/tan (t) = cos (t) / sen (t). La (t) representa el símbolo griego theta, que es la variable para un ángulo desconocido.
Instrucciones
Simplifica una expresión compleja trigonométrica utilizando las identidades trigonométricas para sustituir una por otra con el fin de cancelar partes de la expresión. Simplifica la expresión lo más que puedas mediante la cancelación.
Simplifica la expresión cot (t) * tan (t) - cos (t) ^ 2. Ten en cuenta que las definiciones de cotangente y tangente se anulan entre sí. Sustituye las identidades: (cos (t) / sen (t)) * (sen (t) / cos (t)) - cos (t) ^ 2. Simplifica: (cos (t) * sen (t)) / (sen (t) * cos (t)) - cos (t) ^ 2 o 1 - cos (t) ^ 2.
Observa las definiciones de identidad para ver si 1 - cos (t) ^ 2 se puede simplificar más. Utiliza el conocimiento de que sen ^ 2 (t) + cos ^ 2 (t) = 1 también es igual a sen ^ 2 (t) = 1 - cos (t) ^ 2. Escribe tu respuesta final sen ^ 2 (t).
Más artículos
Cómo resolver problemas de geometría con la técnica SOHCAHTOA→
Cómo calcular el cosecante, el secante y la cotangente→
Cómo resolver problemas matemáticos usando PEMDAS→
Cómo calcular una tangente→
Cómo encontrar la medida de un ángulo en un triángulo si conoces el tamaño de los lados→
Cómo calcular el volumen de un cono→